miércoles, 25 de febrero de 2015

Puerto (informática)

Puerto (informática)

En informática, un puerto es una interfaz a través de la cual se pueden enviar y recibir los diferentes tipos de datos.
La interfaz puede ser de tipo física (hardware) o puede ser a nivel de software, en cuyo caso se usa frecuentemente el término puerto lógico (por ejemplo, los puertos de redes que permiten la transmisión de datos entre diferentes computadoras).

Índice

Puerto lógico


Puertos externos de una placa base de una computadora:
(1) conector Mini-DIN 6 para puerto PS/2 (verde) de mouse.
(2) conector Mini-DIN 6 para puerto PS/2 (violeta) de teclado.
(3) conector registered jack para puerto RJ-45 de red Ethernet.
(4) dos puertos Universal Serial Bus (puerto serie) para conector USB tipo A macho.
(5) conector D-sub (DE-9M) para puerto COM (comunicaciones).
(6) conector D-Sub (DB-25H) para puerto LPT (impresoras antiguas).
(7) conector D-Sub (DE-15H) para puerto VGA.
(8) conector D-Sub (DA-15H) para puerto MIDI.
(9) tres conectores jacks de 3,5 mm para entrada/salida de audio (micrófono y, altavoces, parlantes, audífonos o auriculares).
Se-denomina “puerto lógico” a una zona o localización de la memoria de acceso aleatorio (RAM) de la computadora que se asocia con un puerto físico o un canal de comunicación, y que proporciona un espacio para el almacenamiento temporal de la información que se va a transferir entre la localización de memoria y el canal de comunicación.

Puerto serie

El puerto serie por excelencia es el RS-232, que utiliza cableado simple desde 3 hilos hasta 25 y que conecta computadoras o microcontroladores a todo tipo de periféricos, desde terminales de computadoras a impresoras y módems, pasando por mouses. La interfaz entre el RS-232 y el microprocesador generalmente se realiza mediante el circuito integrado 82C50.
El RS-232 original tenía un conector tipo D de 25 pines, sin embargo, la mayoría de dichos pines no se utilizaban por lo que IBM incorporó desde su PS/2 un conector más pequeño de solamente 6 pines, que es el que actualmente se utiliza. En Europa la norma RS-422, de origen alemán, es también un estándar muy usado en el ámbito industrial.
Uno de los defectos de los puertos serie iniciales era su lentitud en comparación con los puertos paralelos, sin embargo, con el paso del tiempo, han ido apareciendo multitud de puertos serie con una alta velocidad que los hace muy interesantes ya que tienen la ventaja de un menor cableado y solucionan el problema de la velocidad con un mayorapantallamiento. Son más baratos ya que usan la técnica del par trenzado; por ello, el puerto RS-232 e incluso multitud de puertos paralelos están siendo reemplazados por nuevos puertos serie como el USB, el Firewire o el Serial ATA.
Los puertos serie sirven para comunicar la computadora con la impresora, el ratón o el módem, sin embargo, el puerto USB sirve para todo tipo de periféricos, desde ratones a discos duros externos, pasando por conexiones bluetooth. Los puertos sATA (Serial ATA): tienen la misma función que los IDE, (a éstos se conecta, la disquetera, el disco duro, lector/grabador de CD y DVD) pero los sATA cuentan con una mayor velocidad de transferencia de datos. Un puerto de red puede ser puerto serie o puerto paralelo.

Tipos de puertos

PCI

Los puertos PCI1 (Peripheral Component Interconnect) son ranuras de expansión de la placa base de la computadora en las que se pueden conectar tarjetas de expansiónde sonidode vídeode red, etcétera. La ranura o slot PCI se sigue usando hoy en día y podemos encontrar bastantes componentes (la mayoría) en el formato PCI. Dentro de las ranuras PCI está el PCI-Express. Los componentes que suelen estar disponibles en este tipo de ranura son:

PCI-Expres

El PCI expreso2 3 es un nuevo desarrollo del bus PCI que usa los conceptos de programación y los estándares de comunicación existentes, pero se basa en un sistema de comunicación serie mucho más rápido que PCI y AGP. Posee nuevas mejoras para la especificación PCIe 3.0 que incluye una cantidad de optimizaciones para aumentar la señal y la integridad de los datos, incluyendo control de transmisión y recepción de archivos, PLL improvements, recuperación de datos de reloj, y mejoras en los canales, lo que asegura la compatibilidad con las topolgías actuales.4 (anteriormente conocido por las siglas 3GIO, 3rd Generation I/O), este sistema es apoyado, principalmente, por Intel, que empezó a desarrollar el estándar con el nombre de proyecto Arapahoe después de retirarse del sistema Infiniband. Tiene velocidad de transferencia de 16x (8GB/s) y se utiliza en tarjetas gráficas.

Puertos de memoria

A estos puertos se conectan las tarjetas de memoria RAM. Los puertos de memoria son aquellos puertos, o bahías, donde se pueden insertar nuevas tarjetas de memoria, con la finalidad de extender la capacidad de la misma. Existen bahías que permiten diversas capacidades de almacenamiento que van desde los 256MB (megabytes) hasta 4GB (gigabytes). Conviene recordar que en la memoria RAM es de tipo volátil, es decir, si se apaga repentinamente la computadora los datos almacenados en la misma se pierden. Dicha memoria está conectada con la CPU a través de buses de muy alta velocidad. De esta manera, los datos ahí almacenados se intercambian con el procesador a una velocidad unas 1000 veces más rápida que con el disco duro.

Puertos inalámbricos

Las conexiones en este tipo de puertos se hacen sin necesidad de cables, a través de la conexión entre un emisor y un receptor, utilizando ondas electromagnéticas. Si lafrecuencia de la onda, usada en la conexión, se encuentra en el espectro de infrarrojos se denomina puerto infrarrojo. Si la frecuencia usada en la conexión es la usual en las radio frecuencias entonces sería un puerto Bluetooth.
La ventaja de esta última conexión es que el emisor y el receptor no tienen por qué estar orientados el uno con respecto al otro para que se establezca la conexión. Esto no ocurre con el puerto de infrarrojos. En este caso los dispositivos tienen que "verse" mutuamente, y no se debe interponer ningún objeto entre ambos ya que se interrumpiría la conexión.

Puerto USB

Es totalmente plug and play, es decir, con sólo conectar el dispositivo (con la computadora ya encendida), el dispositivo es reconocido e instalado de manera inmediata. Sólo es necesario que el sistema operativo lleve incluido el correspondiente controlador o driver.Un puerto USB permite conectar hasta 127 dispositivos y ya es un estándar en las computadoras de última generación, que incluyen al menos cuatro puertos USB 3.0 en los más modernos, y algún USB 1.1 en los más anticuados. Además, están disponibles en losdispositivos móviles, en su versión Mini-USB y micro-USB.
Presenta una alta velocidad de transferencia en comparación con otro tipo de puertos: USB 1.1 alcanza los 12 Mb/s y hasta los 480 Mb/s (60 MB/s) para USB 2.0, mientras un puerto serie o paralelo tiene una velocidad de transferencia inferior a 1 Mb/s. El puerto USB 2.0 es compatible con los dispositivos USB 1.1.
A través del cable USB no sólo se transfieren datos, además es posible alimentar dispositivos externos. El consumo máximo de este controlador es de 2,5 vatios. Los dispositivos se pueden dividir en dispositivos de bajo consumo (hasta 100 mA, es decir, miliamperios) y dispositivos de alto consumo (hasta 500 mA). Para dispositivos que necesiten más de 500 mA será necesaria alimentación externa. Hay que tener en cuenta, además, que si se utiliza un concentrador y éste está alimentado, no será necesario realizar consumo del bus. Una de las limitaciones de este tipo de conexiones es que la longitud del cable no debe superar los 5 m y que este debe cumplir las especificaciones del estándard USB iguales para las versiones 1.1 y la 2.0.

Puertos para teclado y ratón[editar]


Puertos de hardware en una computadora.

Puertos para audio, video o multimedia

Puertos para redes

Puertos para unidades de almacenamiento

Puertos de alimentación de energía

Puertos PCI, AGP y PCI Express


Los puertos PCI, PCI Express o AGP son componentes que a simple vista parecen similares, pero al estudiarlos más detenidamente y conocer cuáles son sus características podrás determinar para que sirven y cuáles son las diferencias entre ellos.







BUS AGP. Significa Puerto Avanzado de Gráficos y es un sistema utilizado para la conexión de periféricos en la placa base que transfiere datos del microprocesador al periférico que se conecta al bus. El BUS AGP ofrece varios tipos de funcionamiento:
  • AGP 1X con velocidad de 66Mhz transferencia de 264MB/s y voltaje de 3,3V.
  • AGP 2X con velocidad de 133Mhz transferencia de 528MB/s y voltaje de 3,3V.
  • AGP 4X con velocidad de 266Mhz transferencia de 1GB/s y voltaje de 3,3 o 1,5V.
  • AGP 8X con velocidad de 533Mhz transferencia de 2GB/s y voltaje de 0,7 o 1,5V.
Normalmente las placas base solo traen una ranura de BUS AGP.

Puertos PCI Express

BUS PCI Express. Lo último en tecnología, vino a sustituir los buses PCI y AGP, cuenta con gran velocidad de transferencia. Cuenta con dos velocidades, la PCI Express 1X con velocidad de 133Mhz para dispositivos como tarjetas de audio y TV. Y la PCI Express 16X con velocidad de 2128Mhz para tarjetas gráficas.
Con esto básicamente se puede tener una idea de cuál es el diferencial entre cada uno de los buses mencionados y cuáles son los que mejor rendimiento pueden ofrecer a un ordenador.

viernes, 20 de febrero de 2015

Memoria Ram

Memoria Ram



La memoria de acceso aleatorio (Random-Access MemoryRAM) se utiliza como memoria de trabajo de computadoras para el sistema operativo, los programas y la mayor parte del software


Que es y para que sirve

En la RAM se cargan todas las instrucciones que ejecutan la unidad central de procesamiento (procesador) y otras unidades de cómputo.
Se denominan «de acceso aleatorio» porque se puede leer o escribir en una posición de memoria con un tiempo de espera igual para cualquier posición, no siendo necesario seguir un orden para acceder (acceso secuencial) a la información de la manera más rápida posible.
Durante el encendido de la computadora, la rutina POST verifica que los módulos de RAM estén conectados de manera correcta. En el caso que no existan o no se detecten los módulos, la mayoría de tarjetas madres emiten una serie de sonidos que indican la ausencia de memoria principal. Terminado ese proceso, la memoria BIOS puede realizar un test básico sobre la memoria RAM indicando fallos mayores en la misma.


Tipos de RAM

Las dos formas principales de RAM moderna son:
  1. SRAM (Static Random Access Memory), RAM estática, memoria estática de acceso aleatorio.
  2. DRAM (Dynamic Random Access Memory), RAM dinámica, memoria dinámica de acceso aleatorio.
    1. DRAM Asincrónica (Asynchronous Dynamic Random Access Memory, memoria de acceso aleatorio dinámica asincrónica)
      • FPM RAM (Fast Page Mode RAM)
      • EDO RAM (Extended Data Output RAM)
    2. SDRAM (Synchronous Dynamic Random-Access Memory, memoria de acceso aleatorio dinámica sincrónica)
        • RDRAM (Rambus Dynamic Random Access Memory)
        • XDR DRAM (eXtreme Data Rate Dynamic Random Access Memory)
        • XDR2 DRAM (eXtreme Data Rate two Dynamic Random Access Memory)
      • SDR SDRAM (Single Data Rate Synchronous Dynamic Random-Access Memory, SDRAM de tasa de datos simple)
      • DDR SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory, SDRAM de tasa de datos doble)
      • DDR2 SDRAM (Double Data Rate type two SDRAM, SDRAM de tasa de datos doble de tipo dos)
      • DDR3 SDRAM (Double Data Rate type three SDRAM, SDRAM de tasa de datos doble de tipo tres)
      • DDR4 SDRAM (Double Data Rate type four SDRAM, SDRAM de tasa de datos doble de tipo cuatro)






Tecnologías de memoria



SDR SDRAM

Memoria síncrona, con tiempos de acceso de entre 25 y 10 ns y que se presentan en módulos DIMM de 168 contactos. Fue utilizada en los Pentium II y en los Pentium III , así como en los AMD K6AMD Athlon K7 y Duron. Está muy extendida la creencia de que se llama SDRAM a secas, y que la denominación SDR SDRAM es para diferenciarla de la memoria DDR, pero no es así, simplemente se extendió muy rápido la denominación incorrecta. El nombre correcto es SDR SDRAM ya que ambas (tanto la SDR como la DDR) son memorias síncronas dinámicas. Los tipos disponibles son:
  • PC66: SDR SDRAM, funciona a un máx de 66,6 MHz.
  • PC100: SDR SDRAM, funciona a un máx de 100 MHz.
  • PC133: SDR SDRAM, funciona a un máx de 133,3 MHz.

RDRAM

Se presentan en módulos RIMM de 184 contactos. Fue utilizada en los Pentium 4 . Era la memoria más rápida en su tiempo, pero por su elevado costo fue rápidamente cambiada por la económica DDR. Los tipos disponibles son:
  • PC600: RIMM RDRAM, funciona a un máximo de 300 MHz.
  • PC700: RIMM RDRAM, funciona a un máximo de 356 MHz.
  • PC800: RIMM RDRAM, funciona a un máximo de 400 MHz.
  • PC1066: RIMM RDRAM, funciona a un máximo de 533 MHz.
  • PC1200: RIMN RDRAM, funciona a un máximo de 600 MHz.

DDR SDRAM

Memoria síncrona, envía los datos dos veces por cada ciclo de reloj. De este modo trabaja al doble de velocidad del bus del sistema, sin necesidad de aumentar la frecuencia de reloj. Se presenta en módulos DIMM de 184 contactos en el caso de ordenador de escritorio y en módulos de 144 contactos para los ordenadores portátiles. Los tipos disponibles son:
  • PC1600 o DDR 200: funciona a un máx de 200 MHz.
  • PC2100 o DDR 266: funciona a un máx de 266,6 MHz.
  • PC2700 o DDR 333: funciona a un máx de 333,3 MHz.
  • PC3200 o DDR 400: funciona a un máx de 400 MHz.
  • PC4500 o DDR 500: funciona a una máx de 500 MHz.

DDR2 SDRAM


PC2-4200 o DDR2-533: funciona a un máx de 533,3 MHz.
Las memorias DDR 2 son una mejora de las memorias DDR (Double Data Rate), que permiten que los búferes de entrada/salida trabajen al doble de la frecuencia del núcleo, permitiendo que durante cada ciclo de reloj se realicen cuatro transferencias. Se presentan en módulos DIMM de 240 contactos. Los tipos disponibles son:
  • PC2-5300 o DDR2-667: funciona a un máx de 666,6 MHz.
  • PC2-6400 o DDR2-800: funciona a un máx de 800 MHz.
  • PC2-8600 o DDR2-1066: funciona a un máx de 1066,6 MHz.
  • PC2-9000 o DDR2-1200: funciona a un máx de 1200 MHz.

DDR3 SDRAM

Las memorias DDR 3 son una mejora de las memorias DDR 2, proporcionan significantes mejoras en el rendimiento en niveles de bajo voltaje, lo que lleva consigo una disminución del gasto global de consumo. Los módulos DIMM DDR 3 tienen 240 pines, el mismo número que DDR 2; sin embargo, los DIMMs son físicamente incompatibles, debido a una ubicación diferente de la muesca. Los tipos disponibles son:
  • PC3-6400 o DDR3-800: funciona a un máx de 800 MHz.
  • PC3-8500 o DDR3-1066: funciona a un máx de 1066,6 MHz.
  • PC3-10600 o DDR3-1333: funciona a un máx de 1333,3 MHz.
  • PC3-12800 o DDR3-1600: funciona a un máx de 1600 MHz.
  • PC3-14900 o DDR3-1866: funciona a un máx de 1866,6 MHz.
  • PC3-17000 o DDR3-2133: funciona a un máx de 2133,3 MHz.
  • PC3-19200 o DDR3-2400: funciona a un máx de 2400 MHz.
  • PC3-21300 o DDR3-2666: funciona a un máx de 2666,6 MHz.

Módulos de RAM




Los módulos de RAM se conectan eléctricamente a un controlador de memoria que gestiona las señales entrantes y salientes de los integrados DRAM. Las señales son de tres tipos: direccionamiento, datos y señales de control. En el módulo de memoria esas señales están divididas en dos buses y un conjunto misceláneo de líneas de control y alimentación. Entre todas forman el bus de memoria que conecta la RAM con su controlador:


La implementación DRAM se basa en una topología de circuito eléctrico que permite alcanzar densidades altas de memoria por cantidad de transistores, logrando integrados de cientos o miles de megabits. Además de DRAM, los módulos poseen un integrado que permiten la identificación de los mismos ante la computadora por medio del protocolo de comunicación Serial Presence Detect (SPD).Los módulos de RAM son tarjetas o placas de circuito impreso que tienen soldados chips de memoria DRAM, por una o ambas caras.
La conexión con los demás componentes se realiza por medio de un área de pines en uno de los filos del circuito impreso, que permiten que el módulo al ser instalado en un zócalo o ranura apropiada de la placa base, tenga buen contacto eléctrico con los controladores de memoria y las fuentes de alimentación.
La necesidad de hacer intercambiable los módulos, y de utilizar integrados de distintos fabricantes, condujo al establecimiento de estándares de la industria como los Joint Electron Device Engineering Council (JEDEC).
  1. Paquete DIP (Dual In-line Package, paquete de pines en-línea doble).
  2. Paquete SIPP (Single In-line Pin Package, paquete de pines en-línea simple): fueron los primeros módulos comerciales de memoria, de formato propietario, es decir, no había un estándar entre distintas marcas.
  3. Módulos RIMM (Rambus In-line Memory Module, módulo de memoria en-línea rambus): Fueron otros módulos propietarios bastante conocidos, ideados por la empresa RAMBUS.
  4. Módulos SIMM (Single In-line Memory Module, módulo de memoria en-línea simple): formato usado en computadoras antiguas. Tenían un bus de datos de 16 ó 32 bits.
  5. Módulos DIMM (Dual In-line Memory Module, módulo de memoria en-línea dual): usado en computadoras de escritorio. Se caracterizan por tener un bus de datos de 64 bits.
  6. Módulos SO-DIMM (Small Outline DIMM): usado en computadoras portátiles. Formato miniaturizado de DIMM.
  7. Módulos FB-DIMM (Fully-Buffered Dual Inline Memory Module): usado en servidores.







Memoria tipo FB DIMM y sus conectores y zócalo.


-PvP aproximados






Caracterisicas a tener en cuenta


¿Qué tipo de memoria necesita mi computadora? 


Para saber qué tipo de memoria soporta nuestra computadora (específicamente, la placa madre), recomendamos leer: Cómo determinar el tipo de memoria RAM de nuestra PC. 


En resumen: diríjase al manual de la placa madre de su computadora. Allí se especifica el tipo de memoria RAM que soporta. También puede decirle la marca y modelo de su placa madre al comercio donde venden RAM, para que ellos determinen qué memoria soporta. 

También debe saber cuánta memoria RAM puede agregar en la placa madre (porque tiene un límite), para ello lea: Cómo determinar el máximo de memoria RAM permitido en mi computadora. 



¿Cuánta memoria debo adquirir? 



Esta pregunta depende realmente del tipo de computadora que utilice y qué tipo de programa planea ejecutar en ella. Uno de los mejores métodos para determinar cuánta memoria RAM debería tener, es mirar en losRequerimientos recomendados de los programas que está utilizando o quiere utilizar en su computadora. 


Por ejemplo, si usted utiliza programas "pesados" en su computadora, como juegos en 3D, aplicaciones de retoque fotográfico, diseño de 3D, edición de videos, etc., debería ver los "Requerimientos recomendados" de estos programas para poder determinar cuánta memoria RAM necesitará. 



velocidad mhz contra latencia


Las memorias RAM van ofrecen 2 datos para el comprador: velocidad y latencia. Latencia indica el tiempo que tarda hasta acceder a la info... y la velocidad... se entiende por sí sola. Ambos parámetros van "como por escalones", siendo mejor cuanto más velocidad y menor latencia. La cuestión importante aqui es saber como comparar dos memorias:


- La latencia va por escalones (del 7 al 11 normalmente) siendo el estándar actual cl9.

- La velocidad va creciendo también de forma tabulada (2800+(OC)/2400(OC)/2133(OC)/1866(OC)/1600/1333/1066) siendo el valor de referencia actual 1600MHz. Para velocidades superiores a 1600Mhz vemos que vienen acompañadas de las letras (OC); esto implica que para llegar a esa velocidad deberemos ajustarlas de forma más o menos manual, ya que las placas por norma general las detectan como 1333 o 1600.



Partiendo entonces del estandar 1600MHz CL9, para saber cómo de buena es una RAM deberíamos hacer la siguiente cuenta:



- Por cada nivel de latencia por encima de CL9 aplicamos -1 (si los niveles fueran por debajo sería +1). De modo que una memoria CL11 estaría sumando -2 ya que es 2 escalones peor que la CL9



- Por cada nivel de velocidades por encima de 1600MHz aplicamos +1 (si fuera por debajo aplicamos -1). De modo que una memoria a 2133MHz estaría aplicando +2.



- A igualdad de puntuación, para un uso habitual, suele ser preferible aquella de más velocidad.




Usando este sencillo sistema para la comparación que nos pides:



- Corsair Vengeance 1600mhz CL9 ---> Como es el estándar de referencia +0

- G.Skill 1600mhz CL11 ---> La velocidad aplica +0 pero la latencia lo deja en -2


Por lo que la Corsair es mejor que la G.Skill (está 2 "escalones" por encima).